# 電気二重層キャパシタによる新蓄電システム ECaSSの現況と今後の展望

株式会社 岡村研究所 代表

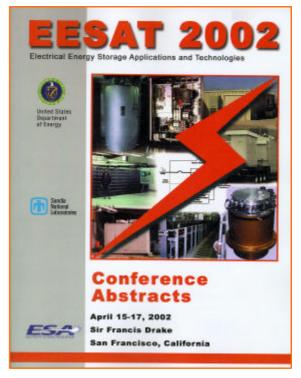
岡村廸夫

# はじめに

キャパシタでこれほど電気が蓄えられる,という認識はまだ十分に普及したとはいえない。それでも2001年の後半から現在,つまり2002年の半ばにかけてこの分野では大きな発展があった。

まずECSはECaSS™(Energy Capacitor Systems) という公式な新しい呼称を持った。そしてECaSS™ を応用した製品が遂に製品として世の中に発売される に至った。またこの期間中に欧米での会議や会合に出 席した結果,キャパシタによる蓄電という分野に新た に内外の関心を集めた。

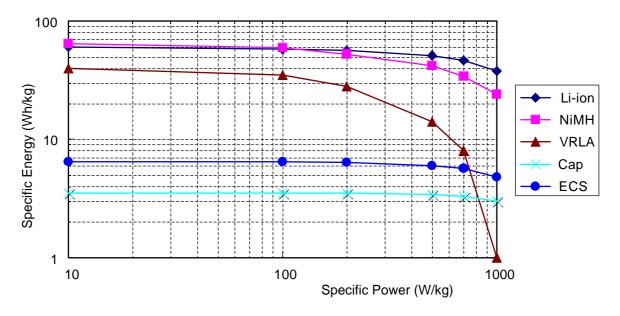
さらに、(株)回村研究所としてホームページを日本語 および英語のサイトを開設したところ8月1日からの 最初の1ヶ月で延べ3000件を越えるアクセスを頂いた。 これは岡村研究所、キャパシタなどのキーワードで一位で検索される幸運も追い風だが、一般への蓄電の関心が徐々に広まりつつある証左とも言えよう。


# 1.世界の蓄電技術と電気二重層キャパシタ

世界の蓄電技術に占める電気二重層キャパシタの現況は,前述の盛況にもかかわらず楽観はできない。例えば2001年10月ベルリンでの世界電気自動車会議EVS-18 [1]や2002年4月サンフランシスコでのEESAT2002 [2]では,キャパシタの論文は少なく,成果も実施状況も他の蓄電方式に比べて特に有望と認められているようには見えなかった。

# 1.1 化学電池、揚水発電所、超伝導蓄電、フライホイールとの競合

ハイブリッド電気自動車の分野で化学電池の一つであるNiMH電池に対し、キャパシタが遅れをとっていたことは実績が明瞭に証明[3]している。


揚水発電所も電力分野としては唯一の実用品であり, 二次電池にも,その他の蓄電装置にも取って代わられ た実例はない。



【図1】EESAT2002の論文抄録の表紙

EESAT2002(**図1**)に出席して驚いたのだが、電力分野の蓄電の専門家の意識では、揚水発電所についで圧縮空気による蓄電や大型の低速フライホイール、あるいはSMES(超伝導による蓄電)による蓄電のほうがキャパシタよりは現実的なのである。そこには新型二次電池やハイブリッド電気自動車には見向きもしない、古くてしかし現実的な蓄電技術の巨大な需要が厳として存在する。

これらと競合してキャパシタは勝ち目があるか。冷静に客観的な観測をすれば、欧米の研究者技術者は最近の日本でのECaSSTMの成果をほとんど知らないから、前述した世界のいくつかの舞台でキャパシタは辛うじて土俵の俵に踏みとどまっている劣勢に見える。パーティなどで話してみてもキャパシタに造詣の深いごく一部、出席者の3~5%くらいの人を別とすれば、キャパシタは前出の各種蓄電方式にはるかに離れて後



【図2】従来の方法で描いたハイブリッド車用二次電池とキャパシタのラゴーンプロット

塵を拝しているようだ。

#### 1.2 キャパシタの弱点

キャパシタがそのように劣勢となった原因は何か。 それは巷間によく言われるエネルギー密度が小さいか らではなく「正確な理解」が普及していないからでは あるまいか。

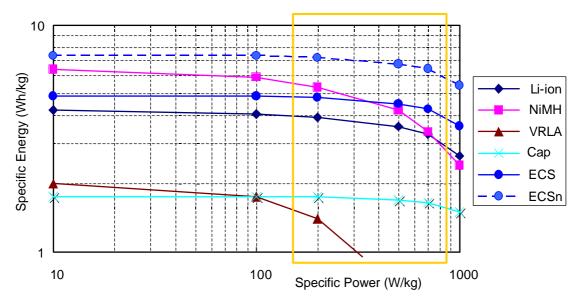
その証拠となる具体例を挙げよう。一つはその動作原理である。揚水発電所にも工学的に難しい点はたくさんあり,あれほどの巨大な水車や送水管を使って水をくみ上げ,そして発電して70%もの効率で20年以上も高信頼性で働くのは驚異である。しかし揚水発電はもちろん,フライホイールや圧縮空気で発電する原理を説明するのにさほど困難はない。

ところがコンデンサ,いや電気二重層キャパシタに電灯が点くような電気のため方をするとなると,その説明が意外に厄介である。それを更に改良して特別な使い方,作り方をしてエネルギー密度を高め……と述べるころには,相手はくたびれてしまって付いてこない。

もう一つの原因は、キャパシタというものが二次電池のような蓄電の道具として存在しなかったことにある。揚水発電所に必要な技術要素は水車や発電機あるいは発電所だから、この分野の技術者にとっては得意分野であった。圧縮空気発電や風車、あるいはフライホイールや決してやさしくはないSMESでさえ電力分野の技術意欲の適切な対象であった。

それでも過去に,電力分野では扱いにくそうであっ

た半導体素子でさえ今日では広く浸透した。これを見ると,電気二重層キャパシタが電力用途で馴染みがないから使われない,という理由にはならない筈だ。


#### 1.3 ECaSSの展開

ここで提示しているキャパシタ蓄電の一方式である ECaSS™は、考え方や定義までだいぶ従来と異なる点がある。それを普及し、量産化にこぎつけない限り値段が下がらない。値段が下がれば使いたいと言う人は既にたくさんいるから、どうやって早くその方向に動かすかが鍵である。

私達が目指してきた展開の方法は次のように要約できる。

性能を更に向上する 実用例を世間に示す 諸媒体を活用して周知を図る 大量生産して価格を下げる

いわゆる従来型,あるいはDOE型の高出力密度,低内部抵抗を狙ったキャパシタが,諸先達の長年の努力にもかかわらす大して普及しなかった原因は の不足を挙げるべきであろう。たとえばプリウスの1995年の試作車にキャパシタが使われながら製品はNiMH電池なった原因は,エネルギー密度が不足したことと,直列に接続したキャパシタの電圧配分の問題があったと想像される。当時のキャパシタのエネルギー密度は単セルで1~2 Wh/kgほどであった。



【図3】寿命を含めたラゴーンプロット, SOC: Li-ion 7%, NiMH 10%, VRLA 5%, Cap 50%, and ECaSS (ECS and ECSnew) 75%

最近のECaSSグループの活躍は , で大いに認識を広めているに違いない。 は本稿の最後に述べる。

# 2.キャパシタのエネルギー密度は小さいか

電気二重層キャパシタのエネルギー密度は二次電池 より小さいか。もちろん小さい。ただしそれは二次電 池の使い方,二次電池の定義で比較すればという前提 がつく。

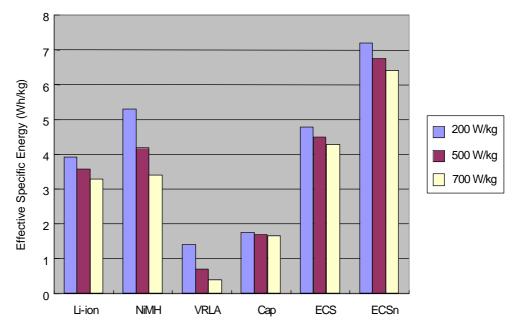
蓄電装置の用途は,そういう電池の都合で決まった 前提条件の中にあるとは限らない。

エネルギー密度など二次電池の特性の表現,定義はずいぶん古い歴史を持っている。それらは主として電池の特性を基盤にして,その上で可能な発展を遂げてきた。

本稿では,その中から主要な二つを取り上げる。 エネルギー密度の表現法 蓄電装置の能力の表現法

# 2.1 エネルギー密度や二次電池の定義は時代遅れ

エネルギー密度をはじめとする二次電池の特性の定義は時代遅れになっていて,一般のエネルギー貯蔵装置に適用したり比べたりするには適当でない。時代遅れだといって悪ければ,電池の,電池による,電池のための定義になっている。


二次電池の特性を表現する最も適切な手段の一つに ラゴーンプロットがある。前ページの**図2**に示したの はハイブリッド電気自動車用として公表されている二 次電池とキャパシタの特性を縦軸を重量当りのエネルギー量,横軸を重量当り出力電力で表したものである。(日本語ではエネルギー密度や出力密度という用語を重量当りと,体積当りの両方に使ってきた。英語で正確に書こうとすると ~ Densityとは体積当りWh/lのことになり,重量当りWh/kgをいうならSpecific Energyと呼ぶ。本稿の表現はそれに合わせた。)

これらのプロットを見る限り,二次電池はいずれもハイブリッド車用ということで,一般用の同じ種類の二次電池よりエネルギー密度が低めに,そして出力密度を大きく設計されていることが分かる。何より明瞭なのはキャパシタとの違いで,ECaSSがいくら力んでも完全に縦軸上の位置が一桁差がある。

### 2.2新しい実情に合った定義と考え方

ところが本稿では、それを誤りだというのである。 次の**図3**をごらん頂きたい。これは前図と同じ二次電池とキャパシタの組み合わせ(開発中の新型ECaSSキャパシタECSnewを追加したが、重要な論点ではない)で寿命の要素を入れてプロットしたものである。

測って見ることの不可能な寿命のファクターをどのような方法で組み入れたかというと,二次電池の場合には寿命を確保するために放電深度の最適な値があって,そこを中心に浅く充放電する手法が一般に用いられる。その放電の深度をハイブリッド車に適用した論文から採集して,電池あるいはキャパシタのエネルギー密度に掛け算し,実際に利用できるエネルギー量



【図4】種々の出力電力におけるキャパシタと二次電池のエネルギー密度

を算出した。

前出の図2と比較して詳しく見ると,電池とキャパシタの間に存在した10倍の差は消え,むしろECaSSが優勢になっている。

何故そんなことが起こったか、キャパシタを有利にするための誤魔化しではないかという疑問が生じても不思議ではない。しかし、前の図2は二次電池の場合、新しいセルを満充電して、可能な最大限の容量で縦軸上の位置をプロットしている。この容量での充放電を実際に繰り返せば、電池にもよるが数十~数百サイクルしか耐えない。

商用ハイブリッド車では車両の寿命の中で300万回, 乗用車でも数十万~100万回も充放電するという使い 方が前提であれば,それとはかけ離れたサイクル寿命 しか出ない使い方で特性を表示する方がおかしい。

何故こんなことになったか。おそらく前述の電池の 長い歴史に根ざしているのであろう。蓄電池の黎明期 から電池の性能を寿命を考慮して表現する習慣はな かった。寿命を含んで特性を定義することはことは, 特に化学反応を利用して蓄電する方式においては, ほゞ原理上から来る本質的ともいえる問題を含むので, サンプルの実測値が普遍的な値とは言えず,著しく困 難であった。業界もそれを定めなかったし,ユーザー も本質的な問題点に迫って,無理に定義させても再現 性が疑わしく実用的でないことも分かっていた。

しかし「蓄電デバイス」と一般化して,電池以外の 方式と比較する際には,電池だけのために定められた 上述の方式は通用しない。現状では電池の公称エネル ギー密度は時間軸のない,いうなれば一回だけのエネ ルギー密度である。これを電池以外の蓄電デバイスと 公平に比較するには図3に示したように,充放電サイクル寿命を保証できる放電深度を定め,その範囲内でのエネルギー量やエネルギー密度を表示すべきだ。

この考え方は世の中に通用していない筆者の試案に過ぎないので、いくつかの会合、ホームページなどに提出して意見を求めた。これまでのところ、この考え方が理論上誤っているという指摘を受けたことはない。ただし電池を擁護するなら、数十回か数百回か寿命を犠牲にしながらでも図2のような大エネルギー量の放電が可能である点は図3に表れない電池のメリットに違いない。もっともそれならキャパシタの側にも、充放電効率が強制冷却が不要なほど高く、安全性が高いなど図3に表れないメリットがあるといえよう。

このままの状態で図 3 から出力密度 200 ,500 および 700 W/kg での値を摘出して棒グラフにしたのが **図 4** である。

なぜこれらの出力密度で比較したかというと,実用のハイブリッド電気自動車で必要とされるもっとも難しい領域がこの辺であることと,電気二重層キャパシタECaSSのLタイプで95%まで放電効率が下がる点が,キャパシタのメーカーによって多少の違いがあるものの500~650 W/kgになるためである。なお,二次電池の放電効率はこの辺では著しく低下するから,強制冷却が欠かせない。

図4で比べるとECaSSキャパシタが全面的に優勢だが、実はそれを示すのが本稿の目的ではない。細かな数値は論文により、また電池の新しい実験データが現れれば、例えば電池の放電深度を2倍にしてもサイクル寿命の長い使い方を見出すか、公称エネルギー密度が3倍の電池が現れれば図の順位は変わってしまう。

| 【表1】 | Summary of the characteristics of advanced   |
|------|----------------------------------------------|
|      | prototype and commercially available carbon- |
|      | based ultracapacitors                        |

| $\mathbf{V}$ | C                                                           | R                                                                                                                                        | RC                                                                                                                                                                                                  | Wh/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wgt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Vol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| rated        | <b>(F)</b>                                                  | (mOhm)                                                                                                                                   | (sec)                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (95%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Match.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |                                                             |                                                                                                                                          |                                                                                                                                                                                                     | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Imped.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.3          | 47                                                          | 5.2                                                                                                                                      | .24                                                                                                                                                                                                 | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .0038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2.3          | 615                                                         | .50                                                                                                                                      | .30                                                                                                                                                                                                 | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.7          | 3500                                                        | 1.0                                                                                                                                      | 3.5                                                                                                                                                                                                 | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.5          | 2700                                                        | .32                                                                                                                                      | .86                                                                                                                                                                                                 | 2.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.5          | 2550                                                        | .33                                                                                                                                      | .84                                                                                                                                                                                                 | 2.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.7          | 3870                                                        | .22                                                                                                                                      | .85                                                                                                                                                                                                 | 3.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .836                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.7          | 4615                                                        | .28                                                                                                                                      | 1.3                                                                                                                                                                                                 | 3.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.5          | 1200                                                        | 1.0                                                                                                                                      | 1.2                                                                                                                                                                                                 | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.5          | 1791                                                        | .30                                                                                                                                      | .54                                                                                                                                                                                                 | 3.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.5          | 2500                                                        | .43                                                                                                                                      | 1.1                                                                                                                                                                                                 | 3.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.5          | 1800                                                        | .50                                                                                                                                      | .90                                                                                                                                                                                                 | 2.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 879                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.5          | 2800                                                        | .39                                                                                                                                      | 1.1                                                                                                                                                                                                 | 3.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7632                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |                                                             |                                                                                                                                          |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.7          | 1350                                                        | 1.5                                                                                                                                      | 2.0                                                                                                                                                                                                 | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.3          | 10000                                                       | .275                                                                                                                                     | 2.75                                                                                                                                                                                                | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | 2.3 2.3 2.7 2.5 2.5 2.7 2.7 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.7 | rated (F)  2.3 47  2.3 615  2.7 3500  2.5 2700  2.5 2550  2.7 3870  2.7 4615  2.5 1200  2.5 1791  2.5 2500  2.5 1800  2.5 2800  2.7 1350 | rated (F) (mOhm)  2.3 47 5.2  2.3 615 .50  2.7 3500 1.0  2.5 2700 .32  2.5 2550 .33  2.7 3870 .22  2.7 4615 .28  2.5 1200 1.0  2.5 1791 .30  2.5 2500 .43  2.5 1800 .50  2.5 2800 .39  2.7 1350 1.5 | rated         (F)         (mOhm)         (sec)           2.3         47         5.2         .24           2.3         615         .50         .30           2.7         3500         1.0         3.5           2.5         2700         .32         .86           2.5         2550         .33         .84           2.7         3870         .22         .85           2.7         4615         .28         1.3           2.5         1200         1.0         1.2           2.5         1791         .30         .54           2.5         2500         .43         1.1           2.5         1800         .50         .90           2.5         2800         .39         1.1           2.7         1350         1.5         2.0 | rated         (F)         (mOhm)         (sec)         (1)           2.3         47         5.2         .24         5.2           2.3         615         .50         .30         3.9           2.7         3500         1.0         3.5         4.1           2.5         2700         .32         .86         2.55           2.5         2550         .33         .84         2.31           2.7         3870         .22         .85         3.43           2.7         4615         .28         1.3         3.70           2.5         1200         1.0         1.2         2.3           2.5         1791         .30         .54         3.44           2.5         2500         .43         1.1         3.70           2.5         1800         .50         .90         2.49           2.5         2800         .39         1.1         3.33           2.7         1350         1.5         2.0         4.9 | rated         (F)         (mOhm)         (sec)         (1)         (95%)           2.3         47         5.2         .24         5.2         5722           2.3         615         .50         .30         3.9         3485           2.7         3500         1.0         3.5         4.1         336           2.5         2700         .32         .86         2.55         784           2.5         2550         .33         .84         2.31         819           2.7         3870         .22         .85         3.43         1114           2.7         4615         .28         1.3         3.70         846           2.5         1200         1.0         1.2         2.3         514           2.5         1791         .30         .54         3.44         1890           2.5         2500         .43         1.1         3.70         1035           2.5         1800         .50         .90         2.49         879           2.5         2800         .39         1.1         3.33         858           2.7         1350         1.5         2.0         4.9         6 | rated         (F)         (mOhm)         (sec)         (1)         (2)         Match. Imped.           2.3         47         5.2         .24         5.2         5722         51000           2.3         615         .50         .30         3.9         3485         30755           2.7         3500         1.0         3.5         4.1         336         2800           2.5         2700         .32         .86         2.55         784         6975           2.5         2550         .33         .84         2.31         819         7284           2.7         3870         .22         .85         3.43         1114         9909           2.7         4615         .28         1.3         3.70         846         7524           2.5         1200         1.0         1.2         2.3         514         4596           2.5         1791         .30         .54         3.44         1890         16800           2.5         2500         .43         1.1         3.70         1035         9200           2.5         1800         .50         .90         2.49         879         7812 | rated         (F)         (mOhm)         (sec)         (1)         (2)         Match. (kg)         (Vag. (kg)           2.3         47         5.2         .24         5.2         5722         51000         .005           2.3         615         .50         .30         3.9         3485         30755         .085           2.7         3500         1.0         3.5         4.1         336         2800         .65           2.5         2700         .32         .86         2.55         784         6975         .70           2.5         2550         .33         .84         2.31         819         7284         .65           2.7         3870         .22         .85         3.43         1114         9909         .836           2.7         4615         .28         1.3         3.70         846         7524         .865           2.5         1200         1.0         1.2         2.3         514         4596         .34           2.5         1791         .30         .54         3.44         1890         16800         .310           2.5         2500         .43         1.1         3.70 |

\*unpackaged (based on the weight of the active components only)

- (1) Energy density at 400 W/kg constant power, Vrated 1/2 Vrated
- (2) Power based on P=9/16\*(1-EF)\*V2/R, EF=efficiency of discharge

This should read "Power Systms"

本稿ではそういった個々のデータが問題なのではなく,「寿命のファクターを考慮したラゴーンプロット」により蓄電デバイスを評価すべきだと提唱しているのである。

#### 2.3 蓄電の豊富な用途とその見直し

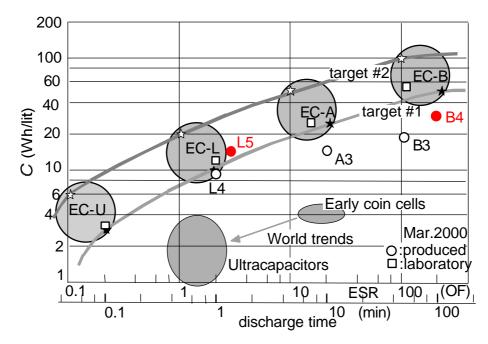
#### 1)電気二重層キャパシタと擬似容量

前項で述べたキャパシタの特性は,ハイブリッド電気自動車あるいはそれに類似した特定の使い方について取り上げたものであって,蓄電デバイスとしてキャパシタが総ての用途に万能だというのではない。

それどころか,世界の動きは電気二重層キャパシタのエネルギー密度が小さいのに失望して,他の手段を模索する動きがむしろ盛んである。学会やセミナーなどでもそれらを総括しようとして,「ウルトラキャパシタ」「スーパーキャパシタ」「電気化学キャパシタ」などの名称で論文や製品が発表されつつある。

表1は米国の学会でA.Burke氏が発表された資料 [4]の一部分に我々のキャパシタの製作者が誤っていたため訂正を申し入れた際のものだが,この表は2002年2月時点での世界の電気二重層キャパシタの性 能を表現している。注目すべきは数値のほかに , 印以外のすべてがアセトニトリルAN電解液を用いている点で , 最適化した状態でプロピレンカーボネートPCの2倍ほどもエネルギー密度がでるが , 引火点が 5 と低く , 燃焼時に有毒ガスが出るので , AN不使用のキャパシタと区別されるべきである。

# 2)擬似容量と中間品


純粋な電気二重層キャパシタを攻めるのではなく, 化学反応(酸化還元反応)を許してでもエネルギー密 度を高めようとする手段は,

#### 擬似容量

片極に電池を用いる

に大別できる。これらはいずれも「ウルトラキャパシタ」「スーパーキャパシタ」「電気化学キャパシタ」 に含まれ電気二重層キャパシタと一緒に扱われている。

酸化ルテニウムなど金属の酸化物や導電性ポリマーにPあるいはNドーピングを行って,エネルギー密度の大きな擬似容量を得ようという研究が日本でも欧米でも盛んに行われ,優れた研究成果が発表されている。サンプルレベルで Pinnacle, Motrolaが知られているが市販された例は聞かない。



【図5】ECaSS™キャパシタの標準設計:エネルギー密度と内部抵抗の関係[2]

アルカリ電解液にNiOOH~Cの構成で,正極を水酸化ニッケルの電池,負極を活性炭による電気二重層キャパシタという製品がロシアのESMA社で量産・市販されており,本国では電気自動車などへの適用例が豊富に存在する。

#### 3)豊富な用途があるが

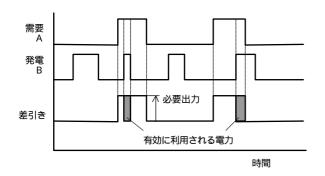
蓄電デバイスとしてのキャパシタの優秀性を図4のような形で述べると、それなら携帯電話から電動自転車まで何でもキャパシタが使えると思う人がいるかもしれない。だが、電池には小電流で使うなら体積や重量あたりの蓄電量が格段に大きいという特徴がある。携帯電話の電源にキャパシタを用いて、嵩張るけれど火中に投入しても安全で、しかも20年持つぞ、と宣伝しても売れないだろう。

図5はECaSS™キャパシタの標準的な特性値とその実例を示すが、図の右に行くほど蓄電池との競争に曝され、左側ほどキャパシタの独自性が主張しやすい。要するに、生産量が少なく単価の高い初期段階では、単純に言えば充放電の激しい用途ほど有利である。ハイブリッド商用車や風力発電の系統安定化などがその好例である。

その反対に,発生頻度は少ないが高速放電が必要で, しかも長い寿命と信頼性が欠かせない用途,例えばエ スカレータ,半導体工場,紙漉きや製鉄などの工場, 印刷工場などの電源バックアップの用途がある。

短時間放電,つまり大出力が出せると特徴を唱える割に,キャパシタに特長的な短時間充電を強調しない

のは理由がある。短時間充電はよほど良く分かって使わないと,ひいきの引き倒しになりかねない。キャパシタは極短時間での充電が可能だが,同じキャパシタなら充電時間を短くするほど効率が低下し,大きな充電器が必要となる。1kWhのキャパシタを1時間で低電力充電する充電器は効率100%として1kWで済むが,1秒間で充電するには3,600kW要る。充放電とも用途の許す限りできるだけ時間をかけて行うのが有利,これはキャパシタに限らず電気工学の法則である。


もう一つの応用は,系統への配線がいらない,長期間メンテナンスフリーである,という性質に関わる。対象が山の上や海の中,あるいはもっと手軽に庭園灯や標識,道路鋲,防犯装置,ロボット等も太陽電池など何らかの充電装置と組み合わせて寿命の続く限りの長期間運転ができる。

# 4)新エネルギーとは何か[5,6]

太陽光や風力など新エネルギー発電を総発電量の0.1%の現状から今後10年間に1%,小泉内閣では改訂して3%まで増す計画という。

そこでなぜ蓄電に注目しないのであろう。過去の統計に揚水発電所の貢献は大きく描かれているから,蓄電の効果を無視しているわけではない。それなのに,太陽光にも風力にも燃料電池発電にも補助金がつくが,なぜ蓄電装置の普及を図ろうとはしないのか。

その理由は,蓄電は発電と違ってエネルギーを生産 しないと考えているからであろう。エネルギーペイ バック時間の計算などでもこういう考え方が行われる



【図6】ランダムな発電Bは必ずしも有効でない

が,それは誤ってはいまいか。なぜかというと,エネルギーは発電さえすればよいのではなく,必要な時,必要な場所に存在しなくては使えないからである。

図6でAのような電力の需要があり、太陽光や風力のような自然エネルギーでBを発電した場合を考えよう。Bの面積つまり発電量は、需要 Aを越えているのだが、必要な発電量Cをカバーする発電機の規模はBがあってもなくても同じである。Bを設けた効果はCの斜線で塗った部分だけ、たとえば火力発電の量を減らすことができる。

しかし、それは余りに効き目が小さい。それを改善するために、多数の太陽光や風力の電気を広い範囲の電力系統につないで平均化すれば、Cのハッチングの領域のような重なる機会が増えて、効き目が大きくなるはずだ……ここまでが現在の考え方である。

だが自然エネルギーは所詮ランダムなので,必要なとき例えば最大負荷の出る日の午後一時に,日がかげり風が凪ぐかもしれないから,図2の差引きのように他の発電所でカバーするだけの用意をして置く必要がある。

つまり太陽光や風力発電は,他の発電所の負荷率(=発電された電力量/発電能力)を下げ,発電設備としては二重の投資となってしまう。

これでは太陽光や風力発電は電力会社に歓迎されるはずがない。いや,電力会社だけでなく,その料金を支払うユーザーにとって,このままでは有利といえるだろうか。本来は地球環境を救うはずの再生可能なエネ

ルギーである自然エネルギー発電を有効にする方法は ないか。

発電 = エネルギーではない。エネルギーは発電すればよいのではなく、必要な時、必要な場所に存在しなくては利用できない。それを実現するのは、蓄電であり、分散型の電力貯蔵だと思うのだが。

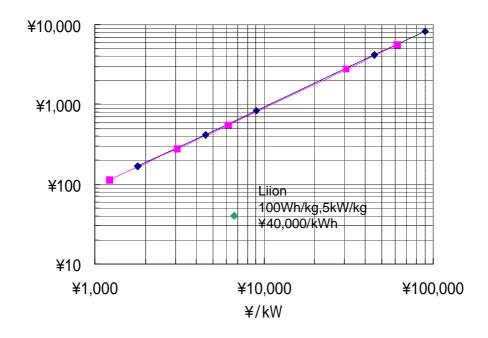
# 3.電気二重層キャパシタの普及への道程


普及への道程は性能の向上とコストの低下である、 と述べたら、それが疑いの余地なく正確でも、あまり にも当然だと失望されるであろう。そこで以下に若干 の手がかりを補填しよう。

# 3.1 コストの評価法/WWhWhteycle

科学の黎明期,プランテ,ユングナーやエジソンが 蓄電池を発明し製品化を競ったころは電気が蓄えられ るというだけで,立派な成果であった。電池の技術は 当時の手法を今でも引きずっている。たとえば容量を アンペアアワー(Ah)で表すが,これは蓄電池が電極材 料に用いる活物質に固有な電圧の電圧源であったため, 電圧を言う必要がなかったからである。Ahを現在で もキャパシタの容量を表すのに使う人が時々いる。

古い技術が今も温存されている例はこれだけではない。当初は電気を溜める技術はそれだけで驚異であったため蓄電池の寿命は、定量的な議論の対象ではなかった。そこで蓄電池の性能を当初の蓄電量ワットアワー(Wh)で表した。これだと**図7**(a)のようにWh当りで表したのでは300回充放電できる電池も30000回使えるものも区別がつかない。


今でも電池や電気二重層キャパシタの値段がWh当りいくら、などというが、これは蓄電池の寿命など議論する余地がなかった昔の手法である。これからは、例えば100Whの蓄電池が生涯に何サイクル充放電できるかを問題にして、**図7**(b)のように10回なら1000Wh・cycleと表現しなくては蓄電装置の働く総容量にならずディメンションが合わない。蓄電装置のコ



【図7】蓄電装置の容量の表し方:(a)では何回持つかは問題でない

ストの計算などは,キャパシタが実用になった今日, この方式で行うべきであろう。

コスト計算といえば、ハイブリッド電気自動車のような高出力蓄電デバイスでは、その評価を入出力電力当り、つまり"¥/W"で計算するという手法がある。たとえば95%の放電効率で50kWのモーターを廻すに必要な、その電池あるいはキャパシタの価格はいくら



【図8】出力密度,エネルギー密度とキャパシタ価格をLiイオン電池と比べる

か,を計算する。もちろん,この場合にはエネルギー量つまり持続時間を考慮する必要があり、Wh当りで計算する場合には出力電力を考えることは欠かせないから,どちらが中心かにかかっている。

# 3.2 使えば下がるコストと量産規模の関係

# 1)出力密度での比較

電気二重層キャパシタの価格が高くなる第一原因は 生産量だが,それは後に廻すと,第二はエネルギー密度である

物の値段を何を基準に表現するか。蓄電装置だから 蓄電電力量,ジュールとかワットアワー当りで比較す ると,本稿の最初に述べた放電深度による実効エネル ギー密度が適用できない場合には,キャパシタは旗色 が良くない。

リチウムイオン電池のエネルギー密度が100Wh/kg あれば、1Wh当り10gですむところを、1Wh/kgのキャパシタでは1,000g必要になる。これがキャパシタが割高だといわれる根拠である。そこを改善しようとECSではエネルギー密度の増倍に挑んできた。それで25Wh/kgができたとしても40g必要である。

値段を出力電力,キロワット当りで比較するとどうなるか。ハイブリッド車や1分間程度のUPSの場合,それだけの時間に何kW充放電できるかが問題である。

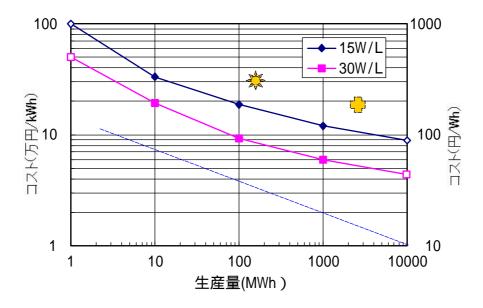
電気二重層キャパシタの場合,前に述べた計算を用いて効率95%あたりでの出力密度を比較すると,ずいぶん控えめに計算しても重量当りでLiイオン電池,

NiMH電池の1.5~2倍程度にはなる。

比較の試算例を**図8**に示したが、出力電力当りで比較すれば、電気二重層キャパシタは明らかに電池より安価に量産できるはずだ。

#### 2) 蓄電量での比較

蓄電性能を比較するのに,出力密度で評価するというのは我田引水,ご都合が良すぎる。それでは盾の一面だけをとった評価だから,やはり蓄電装置の本来の性能でコストを比較すべきだ……という意見はもっともであろう。


それを言うなら一回だけの蓄電量Whではなく,蓄電装置が壊れるまで,何Wh\*cyclesの電力を供給できるかで比較するのが妥当である。

前項の計算でキャパシタが40gだったが,寿命が4倍ならこれは帳消しとなる。二次電池でも放電深度7.5%で充放電サイクル試験すると何万回も持つが,キャパシタは放電深度75%でも平気だから,そこで比べるなら事実上キャパシタのエネルギー密度は10倍あるに等しい。

#### 3)生産量による変化

それでも,現にキャパシタは高い。それは研究所が 手作業で僅かづつ作っているか,ごく小規模な工場し か動いていないからである。

揚水発電所や鉛電池と同じだけ作らせ比較すれば, これまでに述べてきたような理由で,電気二重層キャ パシタは高くはなくなる。大規模な工業化には種々の



【図9】電気二重層キャパシタの生産量と価格の予測~揚水発電および太陽電池との比較

の困難が付きまとうが,これまでに立ち上がった各種 の工業に比べて格別に難しいとは考えられない。

量産した場合のキャパシタの価格試算[7]は既に行われていた。その範囲が10~1000MWhなので,**図9**には1桁左と右に試算値を付け加えた。生産量1~10 MWhで急勾配に価格が低下しているのは,実験室的な生産から工場生産規模の拡大によるもので,価格の絶対値は低減を続けるが,その低減の比率は規模が大きくなるほど減少する。下に添えた破線は生産量10倍につき価格が1/2となる勾配で,生産量100MWh以上ではこれよりさらに低い低減率で算定している。

#### 太陽電池との比較:

キャパシタの価格を太陽電池と比較しよう。太陽電池の2000年の年間生産量は約10万kWpで,この値は約100MWhのキャパシタ蓄電装置に相当する[6]。図9から生産量100MWhにおけるECaSS用電気二重層キャパシタの価格を求めると100~200円/Whを得る。この値は2000年における太陽電池の価格600~800円/Wpに比べて明らかに安い。初期のNEDOの太陽電池の価格の見通しは,これまでも何回も改訂されている。これに対してキャパシタの生産が2010年に500万kWp相当,つまり5000MWhになれば50~100円/Wh,つまり5~10万円/kWhの価格はかなり確実に実現可能と見通すことができる。キャパシタ蓄電装置は価格ばかりでなく,日照に関係ないから設置場所の点でも制約が極めて少なく,需要地のごく近くに設置することが可能である。

#### 揚水発電所と比較:

これまで揚水発電所のコストである20万円/kWと比べると,キャパシタは1万円/Whほどもする現在では

とても競争にならない価格のように見える。筆者自身を含め,多くのキャパシタ関係者でさえそのように思っているかも知れない。しかし,それは誤りであった。

揚水発電所の発電機を1基あたり500MW,発電機3基とすると発電所は1500MWほどの規模だから,最低の2時間率を考えてもコスト計算は3000MWhで行うべきであろう。これを図9に適用すると10~5万円/kWhとなり,充分競合できる価格レンジとなる。また,最初のプラント1台で成熟した産業と同価格になる必要はなく,発電所側には立地などの大きな制約があることを考慮すると,充分に競合できるコストと判断できよう。

# 3.3 今後の展望

こゝまでに述べたように,効果的な蓄電は新エネルギーの一角を担うことができる。その蓄電にキャパシタを提案した理由は,大規模と分散設置のどちらも可能なこと,安全性,そして大量な蓄電システムを導入したときに重要な,高い充放電効率と二次電池より格段に優れた寿命,低公害性などの点でECaSSによる電力貯蔵システムがもっとも有利と考えたからである。

こうした科学的事実と根拠を明瞭にした情報を世間に提供し,国家や地球規模の環境・エネルギー政策に 反映されるよう理解を広めたいと考えている。

# 参考文献

[1] M. Okamura, A Progress Report of the Capacitor Hybrid System--ECS, EVS-18, 5D (2001)

- [2] Michio Okamura: High Energy Density Capacitor Storage Systems, EESAT 2002, March, 2002
- [3] EESAT2002の論文抄録
- [4] Andy Burke: Cost-Effective Combination of Ultracapacitors and Batteries for Vehicle Applications, AABC, Feb. 2002.
- [5] 岡村廸夫:電気二重層キャパシタによる蓄電システムの進展,電子技術2001年4月号,vol.43, no.5, p55-59, 2001.
- [6] 岡村廸夫:キャパシタ蓄電システムによる新エネルギー創成の提案,北見工業大学地域共同研究センター研究成果報告書第8号(2001)
- [7]新エネルギー・産業技術総合開発機構:負荷平準化新手法実証調査最終報告書,2000年3月。

-